Pieces of Fukushima reactor cores still floating around, new study reveals — Hot particles with over 1 Quadrillion becquerels per kilogram detected — Radioactive materials contain Uranium, Polonium, Americium (VIDEO)

Science of the Total Environment, by Marco Kaltofen (Nuclear Science and Engineering Program, Department of Physics, Worcester Polytechnic Institute) and Arnie Gundersen (Fairewinds Energy Education), Dec 2017 (emphasis added): Radioactively-hot particles detected in dusts and soils from Northern Japan… Radioactive particles from Fukushima are tracked via dusts, soils, and sediments; Radioactive dust impacts are tracked in both Japan and the United States/Canada; Atypically-radioactive particles from reactor cores are identified in house dusts… After the March 11, 2011, nuclear reactor meltdowns at Fukushima Dai-ichi, 180 samples of Japanese particulate matter (dusts and surface soils) and 235 similar U.S. and Canadian samples were collected and analyzed… Continue reading

Is India About to Alter the World’s Energy Future?

Should India successfully pull this off, more power to them.

Since 1951, the Indian government has somehow managed to fail in every single attempt to reach its annual target of increasing the nation’s electricity production capacity. But while the nation continues to struggle with crippling blackouts and power shortages till today, an energy plan, conceived during the 1950s, may fundamentally alter the nation’s, and quite possibly the world’s, energy future.

Thorium, like its Norse god and Marvel superhero namesake, is expected to change the world.

Thorium-Fuelled Dreams

Thorium is a naturally occurring radioactive chemical element that is named after the Norse god of thunder, Thor. Discovered in 1828 by Swedish chemist Jons Jakob Berzelius, the 90th element on the periodic table has been described by Forbes as possibly “the biggest energy breakthrough since fire.”

According to Greentech Media, Thorium the potential to replace uranium as a ultra-cheap and ultra-safe nuclear energy source. Not only is the metal approximately three times as abundant as uranium in the earth’s crust, but it also contains up to 200 times the energy density.

“So why on earth are we using uranium?” asked Marin Katusa of Forbes. “As you may recall, research into the mechanization of nuclear reactions was initially driven not by the desire to make energy, but by the desire to make bombs.”

“The $2 billion Manhattan Project that produced the atomic bomb sparked a worldwide surge in nuclear research, most of it funded by governments embroiled in the Cold War. And here we come to it: Thorium reactors do not produce plutonium, which is what you need to make a nuke.”

After decades of relative obscurity however, Thorium is finally attracting increasing interest as an energy source from around the world. Apart from India, China has also announced its intentions to develop a thorium nuclear reactor, while Canada, Germany, Netherlands, the United Kingdom and the United States have all experimented with using thorium as a substitute nuclear fuel in existing nuclear reactors.

India’s thorium plans though are possibly the most well known and most promising of them all.

Full article: Is India About to Alter the World’s Energy Future? (Oil Price)